New expressions for order polynomials and chromatic polynomials

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs

In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...

متن کامل

Chromatic polynomials of some nanostars

Let G be a simple graph and (G,) denotes the number of proper vertex colourings of G with at most  colours, which is for a fixed graph G , a polynomial in  , which is called the chromatic polynomial of G . Using the chromatic polynomial of some specific graphs, we obtain the chromatic polynomials of some nanostars.

متن کامل

Chromatic polynomials and order ideals of monomials

One expansion of the chromatic polynomial n(G,x) of a graph G relies on spanning trees of a graph. In fact, for a connected graph G of order n, one can express n(G,x) = (1 )“-‘x cyi’=;’ ti (1 -x)‘, where ti is the nun&r of spanning trees with external activity 0 and internal activity i. Moreover, it is known (via commutative ring theory) that ti arises as the number of monomials of degree n i 1...

متن کامل

Chromatic Polynomials

Table of contents Introduction 1. Relation of the present work to previous researches on map-coloring and summary of results. 356 2. Definitions. 358 Chapter I. First principles in the numerical and theoretical treatment of chromatic polynomials 1. The three fundamental principles. 362 2. The quadrilateral reduction formula. 363 3. The pentagon reduction formula. 365 4. The m-gon reduction form...

متن کامل

chromatic polynomials of some nanostars

let g be a simple graph and (g,) denotes the number of proper vertex colourings of gwith at most  colours, which is for a fixed graph g , a polynomial in  , which is called thechromatic polynomial of g . using the chromatic polynomial of some specific graphs, weobtain the chromatic polynomials of some nanostars.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Graph Theory

سال: 2019

ISSN: 0364-9024,1097-0118

DOI: 10.1002/jgt.22505